I have a hypothesis that an LLM can act as a pseudocode to code translator, where the pseudocode can tolerate a mixture of code-like and natural language specification. The benefit being that it formalizes the human as the specifier (which must be done anyway) and the llm as the code writer. This also might enable lower resource “non-frontier” models to be more useful. Additionally, it allows tolerance to syntax mistakes or in the worst case, natural language if needed.
In other words, I think llms don’t need new languages, we do.
Thats again programming languages. Real issue with LLMs now is it doesn't matter if it can generate code quickly. Some one still has to read, verify and test it.
Perhaps we need a need a terse programming language. Which can be read quickly and verified. You could call that specification.
My understanding/experience is that LLM performance in a language scales with how well the language is represented in the training data.
From that assumption, we might expect LLMs to actually do better with an existing language for which more training code is available, even if that language is more complex and seems like it should be “harder” to understand.
This does fill up context a little faster, (1) not as much as debugging the problem would have in a dynamic language, and (2) better agentic frameworks are coming that “rewrite” context history for dynamic on the fly context compression.
This isn't even true today. Source: heavy user of claude code and gemini with rust for almost 2 years now.
Additionally just the ability to put an entire language into context for an LLM - a single document explaining everything - is also likely to close the gap.
I was skimming some nano files and while I can't say I loved how it looked, it did look extremely clear. Likely a benefit.
The characteristics of failures have been interesting: As I anticipated it might be, an over ambitious refactoring was a train wreck, easily reverted. But something as simple as regenerating Android launcher icons in a Flutter project was a total blind spot. I had to Google that like some kind of naked savage running through the jungle.
As others said, the key is feedback and prompting. In a model with long context, it'll figure it out.
https://github.com/jordanhubbard/nanolang/blob/main/MEMORY.m...
Optimistically I dumped the whole thing into Claude Opus 4.5 as a system prompt to see if it could generate a one-shot program from it:
llm -m claude-opus-4.5 \
-s https://raw.githubusercontent.com/jordanhubbard/nanolang/refs/heads/main/MEMORY.md \
'Build me a mandelbrot fractal CLI tool in this language'
> /tmp/fractal.nano
Here's the transcript for that. The code didn't work: https://gist.github.com/simonw/7847f022566d11629ec2139f1d109...So I fired up Claude Code inside a checkout of the nanolang and told it how to run the compiler and let it fix the problems... which DID work. Here's that transcript:
https://gisthost.github.io/?9696da6882cb6596be6a9d5196e8a7a5...
And the finished code, with its output in a comment: https://gist.github.com/simonw/e7f3577adcfd392ab7fa23b1295d0...
So yeah, a good LLM can definitely figure out how to use this thing given access to the existing documentation and the ability to run that compiler.
# Control flow
if (> x 0) {
(println "positive")
} else {
(println "negative or zero")
}
But that's nothing compared to the scream for a case/switch-statement in the Mandelbrot example... # Gradient: " .:-=+*#%@"
let gradient: string = " .:-=+*#%@"
let gradient_len: int = 10
let idx: int = (/ (* iter gradient_len) max_iter)
if (>= idx gradient_len) {
return "@"
} else {
if (== idx 0) {
return " "
} else {
if (== idx 1) {
return "."
} else {
if (== idx 2) {
return ":"
} else {
if (== idx 3) {
return "-"
} else {
if (== idx 4) {
return "="
} else {
if (== idx 5) {
return "+"
} else {
if (== idx 6) {
return "*"
} else {
if (== idx 7) {
return "#"
} else {
if (== idx 8) {
return "%"
} else {
return "@"
}
}The thing that really unlocked it was Claude being able to run a file listing against nanolang/examples and then start picking through the examples that were most relevant to figuring out the syntax: https://gisthost.github.io/?9696da6882cb6596be6a9d5196e8a7a5...
Seems unlikely for an out-of-distribution language to be as effective as one that’s got all the training data in the world.
Really needs an agent-oriented “getting started” guide to put in the context, and evals vs. the same task done with Python, Rust etc.
I might accidentally summon a certain person from Ork.
I'm still skeptical of the value add having to teaching a custom language to an LLM instead of using something like lua or python and applying constraints like test requirements onto that.
LLM Code Generation - Unambiguous syntax reduces AI errors
Testing Discipline - Mandatory tests improve code quality
Simple & Fast - Minimal syntax, native performance
Design Philosophy:
Minimal syntax (18 keywords vs 32 in C)
One obvious way to do things
Tests are part of the language, not an afterthought
Transpile to C for maximum compatibility
ehh. i dont think the overhead of inventing a new language makes up for the lack of data around it. in fact if you're close enough to rust/c then llms are MORE likely to make up stuff from their training data and screw up your minimal language.
(pls argue against this, i want to be proven wrong)
This seems like a research dead end to me, the fundamentals are not there
context("Loading configuration from {file}")
Then you get a useful error message by unfolding all the errors at some point in the program that is makes sense to talk to a human, e.g. logs, rpc error etc.Failed: Loading configuration from .config because: couldn't open file .config because: file .config does not exist.
It shouldn't be harder than a context command in functions. But somehow Rust conspires to require all this error type conversion and question marks. It it is all just a big uncomfortable donkey game, especially when you have nested closures forced to return errors of a specific type.
(You should try to get something like that into various language specs; I'd love you to success with it.)
EDIT: typo fixed.
It’s peculiar to see s-expressions mixed together with imperative style. I’ve been experimenting along similar lines - mixing s-expressions with ML style in the same dialect (for a project).
Having an agentic partner toiling away with the lexer/parser/implementation details is truly liberating. It frees the human to explore crazy ideas that would not have been feasible for a side/toy/hobby project earlier.
``` #this is where functions are defined and should compile and give syntax errors ```
:->r = some(param)/connected(param, param, @r)/calls(param)<-:
(yeah, ugly but the idea is there) The point being that the behavior could change. In the streaming world it may, for instance, have guarantees of what executes and what doesn't in case of errors. Maybe transactional guarantees in the stream blocks compared to pure compile optimization in the other blocks? The point here isn't that this is the golden idea, but that we probably should think about the use cases more. High on my list of use cases to consider (I think)
- language independence: LLMs are multilingual and this should be multilingual from the start.
- support streaming vs definition of code.
- Streaming should consider parallelism/async in the calls.
- the language should consider cached token states to call back to. (define the 'now' for optimal result management, basically, the language can tap into LLM properties that matter)
Hmm... That is the top of my head thoughts at least.