2 pointsby github-trending2 hours ago1 comment
  • github-trending2 hours ago
    Hey HN, I built GPU Hot, a self-hosted, real-time GPU monitoring dashboard for NVIDIA GPUs. One Docker command, no config, sub-second updates.

    Quick start: docker run -d --gpus all -p 1312:1312 ghcr.io/psalias2006/gpu-hot:latest

    Live demo: https://psalias2006.github.io/gpu-hot/demo.html

    GitHub: https://github.com/psalias2006/gpu-hot

    What it monitors: Utilization, temperature, memory, power draw, fan speed, clock speeds, PCIe info, P-State, throttle status, encoder/decoder sessions, active processes plus host CPU and RAM. Everything streams over WebSocket and renders in real-time charts.

    Multi-node support: Same image scales from a single machine to a cluster. Run it on each GPU server, then point a hub instance at them one dashboard for all your GPUs, no extra infrastructure needed:

    docker run -d -p 1312:1312 -e GPU_HOT_MODE=hub -e NODE_URLS=http://server1:1312,http://server2:1312 ghcr.io/psalias2006/gpu-hot:latest

    Stack: FastAPI + NVML (nvidia-ml-py) on the backend, vanilla JS + Chart.js on the frontend. MIT licensed. Happy to hear feedback — especially from anyone running larger GPU clusters.