Now what....? Whats happening right now that should make me care that AGI is here (or not). Whats the magic thing thats happening with AGI that wasn't happening before?
<looks out of window> <checks news websites> <checks social media...briefly> <asks wife>
Right, so, not much has changed from 1-2 years ago that I can tell. The job markets a bit shit if you're in software...is that what we get for billions of dollars spent?
It seems like a prediction like "Bob won't become a formula one driver in a minivan". It's true, but not very interesting.
If Bob turned up a couple of years later in Formula one, you'd probably be right in saying that what he is driving is not a mini van. The same is true for AGI anyone who says it can't be done with current methods can point to any advancement along the way and say that's the difference.
A better way to frame it would be, is there any fundimental, quantifiable ability that is blocking AGI? I would not be surprised if the breakthrough technique has been created, but the research has not described the problem that it solves well enough for us to know that it is the breakthrough.
I realise that, for some the notion of AGI is relatively new, but some of us have been considering the matter for some time. I suspect my first essay on the topic was around 1993. It's been quite weird watching people fall into all of the same philosophical potholes that were pointed out to us at university.
PS The first thing you learn about ML is to compare your models to random to make sure the model didn't degenerate during training.
I feel like it's such a bending of the idea,that it's not really making a prediction of anything at all.
This is true in a specific contextual sense (each token that an LLM produces is from a feed-forward pass). But untrue for more than a year with reasoning models, who feed their produced tokens back as inputs, and whose tuning effectively rewards it for doing this skillfully.
Heck, it was untrue before that as well, any time an LLM responded with more than one token.
> A [March] 2025 survey by the Association for the Advancement of Artificial Intelligence (AAAI), surveying 475 AI researchers, found that 76% believe scaling up current AI approaches to achieve AGI is "unlikely" or "very unlikely" to succeed.
I dunno. This survey publication was from nearly a year ago, so the survey itself is probably more than a year old. That puts us at Sonnet 3.7. The gap between that and present day is tremendous.
I am not skilled enough to say this tactfully, but: expert opinions can be the slowest to update on the news that their specific domain may have, in hindsight, have been the wrong horse. It's the quote about it being difficult to believe something that your income requires to be false, but instead of income it can be your whole legacy or self concept. Way worse.
> My take is that research taste is going to rely heavily on the short-duration cognitive primitives that the ARC highlights but the METR metric does not capture.
I don't have an opinion on this, but I'd like to hear more about this take.
There's more than one way to do intelligence. Basic intelligence has evolved independently three times that we know of - mammals, corvids, and octopuses. All three show at least ape-level intelligence, but the species split before intelligence developed, and the brain architectures are quite different. Corvids get more done with less brain mass than mammals, and don't have a mammalian-type cortex. Octopuses have a distributed brain architecture, and have a more efficient eye design than mammals.
I'm honestly shocked by the latest results we're seeing with Gemini 3 Deep Think, Opus 4.6, and Codex 5.3 in math, coding, abstract reasoning, etc. Deep Think just scored 84.6% on ARC-AGI-2 (https://deepmind.google/models/gemini/)! And these benchmarks are supported by my own experimentation and testing with these models ~ specifically most recently with Opus 4.6 doing things I would have never thought possible in codebases I'm working in.
These models are demonstrating an incredible capacity for logical abstract reasoning of a level far greater than 99.9% of the world's population.
And then combine that with the latest video output we're seeing from Seedance 2.0, etc showing an incredible level of image/video understanding and generation capability.
I was previously deeply skeptical that the architecture we have would be sufficient to get us to AGI. But my belief in that has been strongly rattled lately. Honestly I think the greatest gap now is simply one of orchestration, data presentation, and work around in-context memory representations - that is, converting work done into real world into formats/representations, etc. amenable for AI to run on (text conversion, etc.) and keeping new trained/taught information in context to support continual learning.
This is the key I think that Altman and Amodei see, but get buried in hype accusations. The frontier models absolutely blow away the majority of people on simple general tasks and reasoning. Run the last 50 decisions I've seen locally through Opus 4.6 or ChatGPT 5.2 and I might conclude I'd rather work with an AI than the human intelligence.
It's a soft threshold where I think people saw it spit out some answers during the chat-to-LLM first hype wave and missed that the majority of white collar work (I mean it all, not just the top software industry architects and senior SWEs) seems to come out better when a human is pushed further out of the loop. Humans are useful for spreading out responsibility and accountability, for now, thankfully.
Maybe AGI's arrival is when one day someone is given an AI to supervise instead of a new employee.
Just a user who's followed the whole mess, not a researcher. I wonder if the scaffolding and bolt-ons like reasoning will sufficiently be an asymptote to 'true AGI'. I kept reading about the limits of transformers around GPT-4 and Opus 3 time, and then those seem basic compared to today.
I gave up trying to guess when the diminishing returns will truly hit, if ever, but I do think some threshold has been passed where the frontier models are doing "white collar work as an API" and basic reasoning better than the humans in many cases, and once capital familiarizes themselves with this idea more, it's going to get interesting.
The intelligence we think we recognize is simply an electronic parrot finding the right words in its model to make itself useful.
OpenClaw, et al, are one thing that got me nudged a little bit, but it was Sammy Jankis[1,2] that pushed me over the edge, with force. It's janky as all get out, but it'll learn to build it's own memory system on top of an LLM which definitely forgets.
Whether or not AGI is imminent, and whether or not Sammy Jankis is or will be conscious... it's going to become so close that for most people, there will be no difference except to philosophers.
Is AGI 'right around the corner' or currently already achieved? I agree with the author, no, we have something like 10 years to go IMO. At the end of the post he points to the last 30 years of research, and I would accept that as an upper bound. In 10 to 30 years, 99% of people won't be able to distinguish between an 'AGI' and another person when not in meatspace.
What is the benchmark now that the Turing test has been blown out of the water?
The fundamental issue was the assumption that general intelligence is an objective property that can be determined experimentally. It's better to consider intelligence an abstraction that may help us to understand the behavior of a system.
A system where a fixed LLM provides answers to prompts is little more than a Chinese room. If we give the system agency to interact with external systems on its own initiative, we get qualitatively different behavior. The same happens if we add memory that lets the system scale beyond the fixed context window. Now we definitely have some aspects of general intelligence, but something still seems to be missing.
Current AIs are essentially symbolic reasoning systems that rely on a fixed model to provide intuition. But the system never learns. It can't update its intuition based on its experiences.
Maybe the ability to learn in a useful way is the final obstacle on the way towards AGI. Or maybe once again, once we start thinking we are close to solving intelligence, we realize that there is more to intelligence than what we had thought so far.
Humans will never accept we created AI, they'll go so far as to say we were not intelligent in the first place. That is the true power of the AI effect.
We didn't evolve our brains to do math, write code, write letters in the right registers to government institutions, or get an intuition on how to fold proteins. For us, these are hard tasks.
That's why you get AI competing at IMO level but unable to clean toilets or drive cars in all of the settings that humans do.
That, sadly, is the incentive driving the current wave of AI innovation. Your job will be automated long before your household chores are.
That seems like a massive oversimplification of the things our brains evolved to do.
Humans discovered or invented all of those.
Now think about what we just created.
More so, our recent advances in AI have massively accelerated robotics evolution. They are becoming smarter, faster, and more capable at an ever increasing rate.
I think the biggest issue we currently have is with proper memory. But even that is because it's not feasible to post-train an individual model on its experiences at scale. It's not a fundamental architectural limitation.
In a handful of prompts I got the paid version of ChatGPT to say it's possible for dogs to lay eggs under the right circumstances.
But I'd like to think that, even though you could find exceptions, the average human is never confused about whether dogs can lay eggs or not.
Like, it's in the name.
>Imagine you had a frozen [large language] model that is a 1:1 copy of the average person, let’s say, an average Redditor. Literally nobody would use that model because it can’t do anything. It can’t code, can’t do math, isn’t particularly creative at writing stories. It generalizes when it’s wrong and has biases that not even fine-tuning with facts can eliminate. And it hallucinates like crazy often stating opinions as facts, or thinking it is correct when it isn't.
>The only things it can do are basic tasks nobody needs a model for, because everyone can already do them. If you are lucky you get one that is pretty good in a singular narrow task. But that's the best it can get.
>and somehow this model won't shut up and tell everyone how smart and special it is also it claims consciousness. ridiculous.
“yes it will”, “no it won’t” - nobody really knows, it's just a bunch of extremely opinionated people rehashing the same tired arguments across 800 comments per thread.
There’s no point in talking about it anymore, just wait to see how it all turns out.
Lolwut. I keep having to correct Claude at trivial code organization tasks. The code it writes is correct; it’s just ham-fisted and violates DRY in unholy ways.
And I’m not even a great coder…
When you have a single model that can do all you require, you are looking at something that can run billions of copies of itself and cause an intelligence explosion or an apocalypse.
It feels like an arbitrary bar to perhaps make sure we aren't putting AIs over humans, which they are most certainly in the superhuman category on a rapidly growing number of tasks.
But yeah, I suspect LLM:s may actually get close enough. "Just" add more reasoning loops and corresponding compute.
It is objectively grotesquely wasteful (a human brain operates on 12 to 25 watts and would vastly outperform something like that), but it would still be cataclysmic.
/layperson, in case that wasn't obvious
Yeah, but a human brain without the human attached to it is pretty useless. In the US, it averages out to around 2 kW per person for residential energy usage, or 9 kW if you include transportation and other primary energy usage too.