Back then, we thought our theory was more or less complete while having experimental data which disproved it (Michelson-Morley experiment, Mercury perihelion, I am sure there are others).
Right now, we know our theories are incomplete (since GR and QFT are incompatible) while having no experimental data which contradicts them.
The following seem likely to me: (1) Consciousness exists, and is not an illusion that doesn't need explaining (a la Daniel Dennett), nor does it drop out of some magical part of physical theory we've somehow overlooked until now; (2) Mind-matter interactions do not exist, that is, purely physical phenomena can be perfectly explained by appeals to purely physical theories.
Such are the stakes of "naturalistic dualist" thinkers like David Chalmers. But if this is the case, it implies that the physics of matter and the physics of consciousness are orthogonal to each other. Much like it would be a nightmare to stipulate that dark matter is a purely gravitational interaction and that's that, it would be a nightmare to stipulate that consciousness and qualia arise noninteractionally from certain physical processes just because. And if there is at least one materially noninteracting orthogonal component to our universe, what if there are more that we can't even perceive?
You'd expect that at the bottom, the smallest objects would be extremely simple and would follow some single physical law.
But the smallest objects we know of still have pretty complex behavior! So there's probably another layer underneath that we don't know about yet, maybe more than one.
"in the specific regime covering the particles and forces that make up human beings and their environments, we have good reason to think that all of the ingredients and their dynamics are understood to extremely high precision"[0]
Sean Carroll's own favorite topics (emergent gravity, and the many worlds interpretation) are also things that we don't have any clue about.
Yes there is stuff we can calculate to very high precision. Being able to calculate it, and understanding it, are not necessarily the same thing.
Part of the problem is that building bigger colliders, telescopes, and gravitational wave detectors requires huge resources and very powerful computers to store and crunch all the data.
We're cutting research instead of funding it right now and sending our brightest researchers to Europe and China...
For just about anything else, Newton has us covered.
We are finding local maximums(induction) but the establishment cannot handle deduction.
Everything is an overly complex bandaid. At some point someone will find something elegant that can predict 70% as good, and at some point we will realize: 'Oh that's great, the sun is actually at the center of the solar system, Copernicious was slightly wrong thinking planets make circular rotations. We just needed to use ellipses!'
But with particles.
It's also kind of interesting how causality allegedly has a speed limit and it's rather slow all things considered.
Anyway, in 150 years we absolutely came a long way, we'll figure it that out eventually, but as always, figuring it out might lead even bigger questions and mysteries...
The charge of electrons is -1 and protons +1. It has been experimentally measured out to 12 digits or so to be the same magnitude, just opposite charge. However, there are no theories why this is -- they are simply measured and that is it.
It beggars belief that these just happen to be exactly (as far as we can measure) the same magnitude. There almost certainly is a lower level mechanism which explains why they are exactly the same but opposite.
Consistent quantum field theories involving chiral fermions (such as the Standard Model) are relatively rare: the charges have to satisfy a set of polynomial relationships with the inspiring name "gauge anomaly cancellation conditions". If these conditions aren't satisfied, the mathematical model will fail pretty spectacularly. It won't be unitary, can't couple consistently to gravity, won't allow high and low energy behavior to decouple,..
For the Standard Model, the anomaly cancellation conditions imply that the sum of electric charges within a generation must vanish, which they do:
3 colors of quark * ( up charge 2/3 - down charge 1/3) + electron charge -1 + neutrino charge 0 = 0.
So, there's something quite special about the charge assignments in the Standard Model. They're nowhere near as arbitrary as they could be a priori.
Historically, this has been taken as a hint that the standard model should come from a simpler "grand unified" model. Particle accelerators and cosmology hace turned up at best circumstantial evidence for these so far. To me, it's one of the great mysteries.
> you have to accept there will eventually be (hopefully simple) coincidences between certain fundamental values, no?
When the probability of coincidence is epsilon, then, no. Right now they are the same to 12 digits, but that undersells it, because that is just the trailing digits. There is nothing which says the leading digits must be the same, eg, one could be 10^30 times bigger than the other. Are you still going to just shrug and say "coincidence?"
That there are 26 fundamental constants and this one is just exactly the same is untenable.
Consider: in every known case where we have found a deeper layer of explanation for a "coincidence" in physics, the explanation involved some symmetry or conservation law that constrained the values to a small discrete set. The quark model took seemingly arbitrary coincidences and revealed them as consequences of a restrictive structure. auntienomen's point about anomaly cancellation is also exactly this kind of thing. The smallness of the set in question isn't forced, but it is plausible.
But I actually think we're agreeing more than you realize. You're saying "this can't be a coincidence, there must be a deeper reason." I'm saying the deeper reason might bottom out at "the consistent discrete structures are sparse and this is one of them," which is a real explanation, but it might not have the form of yet another dynamical layer underneath.
No. It’s almost certainly not a coïncidence that these charges are symmetric like that (in stable particles that like to hang out together).
And does it even apply here? If the charge on the electron differed from the charge on the proton at just the 12th decimal place, would that actually prevent complex life from forming. Citation needed for that one.
I agree with OP. The unexplained symmetry points to a deeper level.
Some lean on the multiverse and the anthropic principle to explain it, but that is far less parsimonious.
In other words: There can be multiple "layers" of linked states, but that doesn't necessarily mean the lower layers "create" the higher layers, or vice versa.
For example, pair production is:
photon + photon = electron + (-)electron
You can take that diagram, rotate it in spacetime, and you have the direct equivalent, which is electrons changing paths by exchanging a photon: electron + photon = electron - photon
There are similar formulas for beta decay, which is: proton = neutron + electron + (-)neutrino
You can also "rotate" this diagram, or any other Feyman diagram. This very, very strongly hints that the fundamental particles aren't actually fundamental in some sense.The precise why of this algebra is the big question! People are chipping away at it, and there's been slow but steady progress.
One of the "best" approaches I've seen is "The Harari-Shupe preon model and nonrelativistic quantum phase space"[1] by Piotr Zenczykowski which makes the claim that just like how Schrodinger "solved" the quantum wave equation in 3D space by using complex numbers, it's possible to solve a slightly extended version of the same equation in 6D phase space, yielding matrices that have properties that match the Harari-Shupe preon model. The preon model claims that fundamental particles are further subdivided into preons, the "charges" of which neatly add up to the observed zoo of particle charges, and a simple additive algebra over these charges match Feyman diagrams. The preon model has issues with particle masses and binding energies, but Piotr's work neatly sidesteps that issue by claiming that the preons aren't "particles" as such, but just mathematical properties of these matrices.
I put "best" in quotes above because there isn't anything remotely like a widely accepted theory for this yet, just a few clever people throwing ideas at the wall to see what sticks.
But again, this is just observation, and it is consistent with the charges we measure (again, just observation). It doesn't explain why these rules must behave as they do.
> This very, very strongly hints that the fundamental particles aren't actually fundamental in some sense.
This is exactly what I am suggesting in my original comment: this "coincidence" is not a coincidence but falls out from some deeper, shared mechanism.
Sure, but that's fundamental to observing the universe from the inside. We can't ever be sure of anything other than our observations because we can't step outside our universe to look at its source code.
> It doesn't explain why these rules must behave as they do.
Not yet! Once we have a a theory of everything (TOE), or just a better model of fundamental particles, we may have a satisfactory explanation.
For example, if the theory ends up being something vaguely like Wolfram's "Ruliad", then we may be able to point at some aspect of very trivial mathematical rules and say: that "the electron and proton charges pop out of that naturally, it's the only way it can be, nothing else makes sense".
We can of course never be totally certain, but that type of answer may be both good enough and the best we can do.
Now, the ratios between these charges appear to be fundamental. But the presence of fractions is arbitrary.
Actually, I doubt it. Because of their color charge, quarks can never be found in an unbound state but instead in various kinds of hadrons. The ways that quarks combine cause all hadrons to end up with an integer charge, with the ⅔ and -⅓ charges on various quarks merely being ways to make them come out to resulting integer charges.
I measured the electron's vector coupling to the Z boson at SLAC in the late 1990s, and the answer from that measurement is: we don't know yet - and that's the point.
Thirty years later, the discrepancy between my experiment and LEP's hasn't been resolved.
It might be nothing. It might be the first whisper of dark matter or a new force. And the only way to find out is to build the next machine. That's not 'dead', that's science being hard.
My measurement is a thread that's been dangling for decades, waiting to be pulled.
Nuclear physics (ie, low/medium energy physics) covers diverse topics, many with real world application - yet travels with a lot of the same particles (ie, quarks, gluons). Because it is so diverse, it is not dead/dying in the way HEP is today.
I will commit the first sin, by declaring without fear of contradiction the cat actually IS either alive or dead. it is not in a superposition of states. What is unknown is our knowledge of the state, and what collapses is that uncertainty.
If you shift this to the particle, not the cat, what changes? because if very much changes, my first comment about the unsuitability of the metaphor is upheld, and if very little changes, my comment has been disproven.
It would be clear I am neither a physicist nor a logician.
However I still find it crazy that when you slow down the laser and one photon at a time goes through either slit you still get the bands. Which begs the question, what exactly is it constructively or destructively interfering with?
Still seems like there's much to be learned about the quantum world, gravity, and things like dark energy vs MOND.
(This is what I was told, exploring my belief it's always been fringes in streams of photons not emerging over repeated applications of single photons and I was wrong)
"The analysis has been optimized using neural networks to achieve the smallest expected fractional uncertainty on the t¯t production cross section"
Fun fact: I got to read the thesis of one my uncles who was a young professor back in the 90's. Right when they were discovering bosons. They were already modelling them as tensors back then. And probably multilinear transformations.
Now that I am grown I can understand a little more, I was about 10 years old back then. I had no idea he was studying and teaching the state of the art. xD
You can find tensors even in some niche stuff in macroeconomics.
The discovery of the Higgs boson in 2012 completed the Standard Model of particle physics, but the field has since faced a "crisis" due to the lack of new discoveries. The Large Hadron Collider (LHC) has not found any particles or forces beyond the Standard Model, defying theoretical expectations that additional particles would appear to solve the "hierarchy problem"—the unnatural gap between the Higgs mass and the Planck scale. This absence of new physics challenged the "naturalness" argument that had long guided the field.
In 2012, physicist Adam Falkowski predicted the field would undergo a slow decay without new discoveries. Reviewing the state of the field in 2026, he maintains that experimental particle physics is indeed dying, citing a "brain drain" where talented postdocs are leaving the field for jobs in AI and data science. However, the LHC remains operational and is expected to run for at least another decade.
Artificial intelligence is now being integrated into the field to improve data handling. AI pattern recognizers are classifying collision debris more accurately than human-written algorithms, allowing for more precise measurements of "scattering amplitude" or interaction probabilities. Some physicists, like Matt Strassler, argue that new physics might not lie at higher energies but could be hidden in "unexplored territory" at lower energies, such as unstable dark matter particles that decay into muon-antimuon pairs.
CERN physicists have proposed a Future Circular Collider (FCC), a 91-kilometer tunnel that would triple the circumference of the LHC. The plan involves first colliding electrons to measure scattering amplitudes precisely, followed by proton collisions at energies roughly seven times higher than the LHC later in the century. Formal approval and funding for this project are not expected before 2028.
Meanwhile, U.S. physicists are pursuing a muon collider. Muons are elementary particles like electrons but are 200 times heavier, allowing for high-energy, clean collisions. The challenge is that muons are highly unstable and decay in microseconds, requiring rapid acceleration. A June 2025 national report endorsed the program, which is estimated to take about 30 years to develop and cost between $10 and $20 billion.
China has reportedly moved away from plans to build a massive supercollider. Instead, they are favoring a cheaper experiment costing hundreds of millions of dollars—a "super-tau-charm facility"—designed to produce tau particles and charm quarks at lower energies.
On the theoretical side, some researchers have shifted to "amplitudeology," the abstract mathematical study of scattering amplitudes, in hopes of reformulating particle physics equations to connect with quantum gravity. Additionally, Jared Kaplan, a former physicist and co-founder of the AI company Anthropic, suggests that AI progress is outpacing scientific experimentation, positing that future colliders or theoretical breakthroughs might eventually be designed or discovered by AI rather than humans.
The problem is that we've mostly explained everything we have easy access to. We simply don't have that many anomalies left. Theoretical physicists were both happy and disappointed that the LHC simply verified everything--theories were correct, but there weren't really any pointers to where to go next.
Quantum gravity seems to be the big one, but that is not something we can penetrate easily. LIGO just came online, and could only really detect enormous events (like black hole mergers).
And while we don't always understand what things do as we scale up or in the aggregate, that doesn't require new physics to explain.
Scaling up particle colliders has arguably hit diminishing returns.
>Cari Cesarotti, a postdoctoral fellow in the theory group at CERN, is skeptical about that future. She notices chatbots’ mistakes, and how they’ve become too much of a crutch for physics students. “AI is making people worse at physics,” she said.