It's a CUDA alternative that uses finite field theory to convert GPU kernels to prime number fields.
Finite Field is the primary data structure : FF-asm is a CUDA alternative designed for computations over finite fields.
Recursive computing support : not cache-aware vectorization, not parallelization, but performing a calculation inside a calculation inside another calculation.
Extension of C89 - runs everywhere gcc is available. Context : I'm getting my math PhD and I built this language around my area of expertise, Number Theory and Finite Fields.
Additionally I've tried earlier chapters and they are behind a paywall.
You need a better introduction.
I for one have no clue what anything I read in there is supposed to mean. Emulating a GPU's semantics on a CPU is a topic which I thought I had a decent grasp on, but everything from the stated goals at the top of this article to the example code makes no sense to me.
Your LinkedIn says you're an undergrad that took a gap year 10 months ago (before completing your senior year) to do sales for a real estate company.
But, suppose I did actually hold that belief for some reason, then it would seem fairly intellectually dishonest to withhold relevant info in my pointed inquisition wherein I just characterize them as someone lacking mathematical experience at all, let alone from a world class university. But maybe that's just me!
Interestingly, in the same work, contrary to what you’d expect, transpiling GPU code to run on CPU gives ~76% speedups in HPC workloads compared to a hand optimized multi-core CPU implementation on Fugaku(a CPU only supercomputer), after accounting for these differences in synchronization.
Looks like this entire paper is just about how to move/remove these barriers.
I thought a finite field's order has to be a prime power.
I’m dubious of this project.
Edit: this tickles my brain about some similar seeming sort of programming language experiment, where they were also trying to express concurrency (not inherently the same as parallelism) using some fancy math. I can't remember what it was though?
I know that's pretty abstract, but without that kind of "apples to apples" comparison, I have trouble contextualizing what kind of output is bring targeted with this kind of work.
This was discussed on Reddit - this is not actually finite field arithmetic.
Also you can go to this dudes GitHub and see exactly how serious this project is.
https://github.com/LeetArxiv/Finite-Field-Assembly
Lol