"113 km absolute ranging with nanometer precision" (2024) https://arxiv.org/abs/2412.05542 :
> two-way dual-comb ranging (TWDCR) approach
> The advanced long-distance ranging technology is expected to have immediate implications for space research initiatives, such as the space telescope array and the satellite gravimetry
For ranging in an atmosphere they suggest dual-comb spectroscopy or two-color methods to account for the atmospheric changes.
However, laser interferometers were already quite good; LIGO, most famously, detected gravitational waves by measuring strains of around 10⁻²⁰ over a distance of 1120 km, which works out to a change in distance of less than 0.000012 nanometers, much less than the width of a proton.
The news here actually seems to be that "A new way to gauge distance using lasers can measure lengths of more than 100 kilometres ... To continue reading, subscribe today with our January sale." So, uh, I don't know, maybe the reporter wasn't familiar with LIGO and thought that nanometer-precision interferometry over kilometers was new? Sitkack, you say there's a paper somewhere?
It is very readable. This measures absolute distance.
LIGO was its own thing https://en.wikipedia.org/wiki/LIGO many people, big vacuum.
Two sites, one by Hanford the other in a swamp https://www.ligo.caltech.edu/WA https://www.ligo.caltech.edu/LA
Absolute is a lot harder to do with interferometers vs. relative measurements.
Best guess is, he's not about to let the Y10K problem catch him napping.
To suggest they plan for 97975y or 997975y seems a bit obnoxious. At that point you're either just being contentious for the sake of it, or you're pretentiously implying that you have godlike predictive power.
If this technique could be adapted to existing optical fiber infrastructure, we could see the effects of fiber optic cable stretch and deformation in realtime.