This framing is reminiscent of similar oversights in planetary science, such as the perplexing case of Mars' north pole. Studies suggest a cyclical process where subsurface vapor escapes through a thinned crust during colder seasons, freezing into massive ice deposits, like those seen in the Korolev Crater. These ice layers, some over 1.2 miles thick (see the ESA Korolev Crater Study), challenge the traditional narrative of Mars' geophysical activity. Observations from missions like Mars Express and Mars Reconnaissance Orbiter reveal hints of dynamic interactions between the crust and atmosphere, yet much of this is glossed over in mainstream discussions.
Why is there a persistent pattern of incomplete or opaque presentations regarding planetary poles? The public deserves transparency and detailed interpretations, not handwaving claims. If the evidence of crustal thinning and volatile release is as compelling as the imagery suggests, why the reluctance to address it head-on???
A commitment to clarity would foster trust in scientific institutions, rather than leaving informed observers to speculate about what's being left unsaid. This is frustrating.
I'm curious how this works. The dynamic range between the sunlit parts and the dark portions must be huge at that distance from the Sun. Anyone have the technical details on the camera or post processing they use to achieve this? Is it really a long exposure or is it a series of photos at different exposures stitched together?
Edit: details at the bottom seem to imply a single photo, but that "long exposure" really isn't that long
>This image of Mercury's surface was taken by M-CAM 1 [...] using an integration time of 40 milliseconds.
I'd guess this is a fixed aperture system where the main way to control the exposure is with shutter speed. But for images taken in bright sunlight, you can use shutter speeds 1/250, 1/1000, 1/2000, or even higher type numbers. In those terms, 40 milliseconds is 10 times slower/longer than 1/250.
So for the M-CAM 1 system, 40 milliseconds could be an extremely long exposure
Edit: the sensor is integrating CURRENT. Charge is the integral!
Update: From this map [3], the pole appears to be on the rim of the crater touching crater Tolkein on the latter's right (see ahazred8ta's comment for a link to an annotated copy of the photograph), and in the photograph, that part of the rim is illuminated.
[1] https://nssdc.gsfc.nasa.gov/planetary/factsheet/mercuryfact....
[2] Data from [1] and https://en.wikipedia.org/wiki/Sun:
Solar radius: 7e8 M
Mercury aphelion: 7e10 M
Angular radius at aphelion = arctan 0.01 = 0.57 degrees.
[3] https://pubs.usgs.gov/sim/3404/sim3404_sheet2_.pdf